Time-Series Forecasting Using Fuzzy-Neural System with Evolutionary Rule Base
نویسندگان
چکیده
This paper proposes a new hybrid time series forecasting system which is the fusion of the fuzzy system and the artificial neural network. The proposed fuzzy-neural system consists of 5 layers: the input layer, the fuzzification layer, the inference layer, the hidden layer, and the output layer. The artificial neural network is used as the fuzzy inference engine, while the genetic algorithm is used to optimize the fuzzy rule-base. This proposed system is tested with six time series data. The results obtained are very encouraging.
منابع مشابه
Sales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods
The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...
متن کاملDevelopment of an evolutionary fuzzy expert system for estimating future behavior of stock price
The stock market has always been an attractive area for researchers since no method has been found yet to predict the stock price behavior precisely. Due to its high rate of uncertainty and volatility, it carries a higher risk than any other investment area, thus the stock price behavior is difficult to simulation. This paper presents a “data mining-based evolutionary fuzzy expert system” (DEFE...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملTime Variant Fuzzy Time Series Approach for Forecasting Using Particle Swarm Optimization
Fuzzy time series have been developed during the last decade to improve the forecast accuracy. Many algorithms have been applied in this approach of forecasting such as high order time invariant fuzzy time series. In this paper, we present a hybrid algorithm to deal with the forecasting problem based on time variant fuzzy time series and particle swarm optimization algorithm, as a highly effi...
متن کاملLoad Forecasting Research of Power System Based on Fuzzy Sets Algorithm
In this paper, adjust the system parameters back-propagation algorithm based on fuzzy similarity interval type proposed by the fuzzy rule base to streamline redundant fuzzy sets, we can also merge with the means to reduce the number of redundant fuzzy rules, then singular value decomposition method is preferred fuzzy rules. The algorithm can effectively eliminate the adverse effects caused by r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JRM
دوره 18 شماره
صفحات -
تاریخ انتشار 2006